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Python for Statisticians
I Statistical computing
I Permutation testing



Statistical computing landscape



History of statistical computing (at Berkeley)

I Census data
I Bombing research

(WWII)
I DEC PDP-11/45

(1974)

Credit: en.wikipedia.org/wiki/Marchant_calculator

en.wikipedia.org/wiki/Marchant_calculator


History of statistical programming

Once upon a time, statistical
programming involved calling Fortran
subroutines directly.

S provided a common environment to
interactively explore data.

I Fortran (1950s)
I APL (1960s)
I S (1970s)
I R (1990s)
I Python (1990s)

Credit: en.wikipedia.org/wiki/APL_(programming_language)



Monte Carlo
>>> from numpy import sqrt
>>> from numpy.random import random

>>> x = 2*random(10**8) - 1
>>> y = 2*random(10**8) - 1
>>> length = sqrt(x**2 + y**2)
>>> in_circle = length <= 1
>>> 4 * in_circle.mean()
3.14152224



Resampling

I Bootstrap
I Permutation tests



Deep learning

arxiv.org/abs/1506.00619

arxiv.org/abs/1506.00619


Stat 133: Concepts in Computing with Data



Why Python?

I General purpose language with batteries included
I Popular for wide-range of scientific applications
I Growing number of libraries statistical applications

I pandas, scikit-learn, statsmodels

http://pandas.pydata.org/
http://scikit-learn.org/
http://statsmodels.sourceforge.net/


Stat 94: Foundations of Data Science

Credit: www.dailycal.org/2015/09/02/uc-berkeley-piloting-new-data-science-class-fall

www.dailycal.org/2015/09/02/uc-berkeley-piloting-new-data-science-class-fall


data8.org

data8.org


More Python in the statistics curriculum

I Stat 159/259: Reproducible and Collaborative Statistical Data
Science

I Stat 222: Masters of Statistics Capstone Project
I Stat 243: Introduction to Statistical Computing



Permutation testing



Permutation tests (sometimes referred to as randomization,
re-randomization, or exact tests) are a nonparametric approach to
statistical significance testing.



I Permutation tests were developed to test hypotheses for which
relabeling the observed data was justified by exchangeability of
the observed random variables.

I In these situations, the conditional distribution of the test
statistic under the null hypothesis is completely determined by
the fact that all relabelings of the data are equally likely.



Exchangeability

A sequence X1,X2,X3, . . . ,Xn of random variables is exchangeable
if their joint distribution is invariant to permutations of the indices;
that is, for all permutations π of 1, 2, . . . , n

p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n))



Exchangeability II

Exchangeability is closely related to the notion of independent and
identically-distributed (iid) random variables.

I iid random variables are exchangeable.
I But, simple random sampling without replacement produces an

exchangeable, but not independent, sequence of random
variables.



Effect of treatment in a randomized controlled experiment
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

11 pairs of rats, each pair from the same litter.

Randomly—by coin tosses—put one of each pair into “enriched”
environment; other sib gets “normal” environment.

After 65 days, measure cortical mass (mg).

treatment 689 656 668 660 679 663 664 647 694 633 653
control 657 623 652 654 658 646 600 640 605 635 642
difference 32 33 16 6 21 17 64 7 89 -2 11

How should we analyze the data?

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Informal Hypotheses
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

Null hypothesis: treatment has “no effect.”

Alternative hypothesis: treatment increases cortical mass.

Suggests 1-sided test for an increase.

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Test contenders
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

I 2-sample Student t-test:

mean(treatment) - mean(control)
pooled estimate of SD of difference of means

I 1-sample Student t-test on the differences:

mean(differences)
SD(differences)/

√
11

Better, since littermates are presumably more homogeneous.
I Permutation test using t-statistic of differences: same statistic,

different way to calculate P-value. Even better?

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Strong null hypothesis
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

Treatment has no effect whatsoever—as if cortical mass were
assigned to each rat before the randomization.

Then equally likely that the rat with the heavier cortex will be
assigned to treatment or to control, independently across littermate
pairs.

Gives 211 = 2, 048 equally likely possibilities:
difference ±32 ±33 ±16 ±6 ±21 ±17 ±64 ±7 ±89 ±2 ±11

For example, just as likely to observe original differences as
difference -32 -33 -16 -6 -21 -17 -64 -7 -89 -2 -11

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Weak null hypothesis
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

On average across pairs, treatment makes no difference.

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Alternatives
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

Individual’s response depends only on that individual’s assignment

Special cases: shift, scale, etc.

Interactions/Interference: my response could depend on whether
you are assigned to treatment or control.

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Assumptions of the tests
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

I 2-sample t-test: masses are iid sample from normal
distribution, same unknown variance, same unknown mean.
Tests weak null hypothesis (plus normality, independence,
non-interference, etc.).

I 1-sample t-test on the differences: mass differences are iid
sample from normal distribution, unknown variance, zero mean.
Tests weak null hypothesis (plus normality, independence,
non-interference, etc.)

I Permutation test: Randomization fair, independent across pairs.
Tests strong null hypothesis.

Assumptions of the permutation test are true by design: That’s how
treatment was assigned.

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Student t-test calculations
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

Mean of differences: 26.73mg
Sample SD of differences: 27.33mg
t-statistic: 26.73/(27.33/

√
11) = 3.244

P-value for 1-sided t-test: 0.0044

Why do cortical weights have normal distribution?

Why is variance of the difference between treatment and control the
same for different litters?

Treatment and control are dependent because assigning a rat to
treatment excludes it from the control group, and vice versa.

Does P-value depend on assuming differences are iid sample from a
normal distribution? If we reject the null, is that because there is a
treatment effect, or because the other assumptions are wrong?

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Permutation t-test calculations
www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf

Could enumerate all 211 = 2, 048 equally likely possibilities.
Calculate t-statistic for each.
P-value is

P = number of possibilities with t ≥ 3.244
2,048

(For mean instead of t, would be 2/2, 048 = 0.00098.)

For more pairs, impractical to enumerate, but can simulate:

Assign a random sign to each difference. Compute t-statistic
Repeat 100,000 times

P ≈ number of simulations with t ≥ 3.244
100,000

www.stat.berkeley.edu/~stark/Teach/S240/Notes/lec1.pdf


Compute

from itertools import product
from numpy import array, sqrt

t = [689, 656, 668, 660, 679, 663, 664, 647, 694, 633, 653]
c = [657, 623, 652, 654, 658, 646, 600, 640, 605, 635, 642]
d = array(t) - array(c)
n = len(d)

x = array(list(product([1, -1], repeat=11)))
exact = x * d
dist = exact.mean(axis=1) / (exact.std(axis=1) / sqrt(n))



Simulate (n� 11)

from numpy import array, sqrt
from numpy.random import binomial as binom

t = [689, 656, 668, 660, 679, 663, 664, 647, ...]
c = [657, 623, 652, 654, 658, 646, 600, 640, ...]
d = array(t) - array(c)
n = len(d)

reps = 100000
x = 1 - 2 * binom(1, .5, n*reps)
x.shape = (reps, n)
sim = x * d
dist = sim.mean(axis=1) / (sim.std(axis=1) / sqrt(n))



Compare

>>> from numpy import mean
>>> observed_ts = d.mean() / (d.std() / sqrt(n))
>>> mean(dist >= observed_ts)
0.0009765625

(versus 0.0044 for 1-sided t-test)



Visualize

import matplotlib.pyplot as plt
from numpy import linspace
from scipy.stats import t

plt.hist(dist, 100, histtype='bar', normed=True)
plt.axvline(observed_ts, color='red')
df = n - 1
x = linspace(t.ppf(0.0001, df), t.ppf(0.9999, df), 100)
plt.plot(x, t.pdf(x, df), lw=2, alpha=0.6)
plt.show()



Visualize



permute

https://github.com/statlab/permute
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