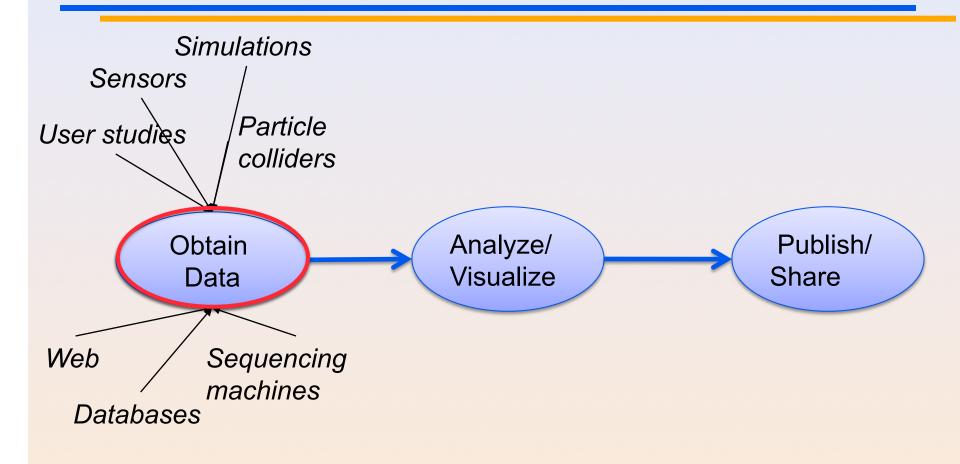
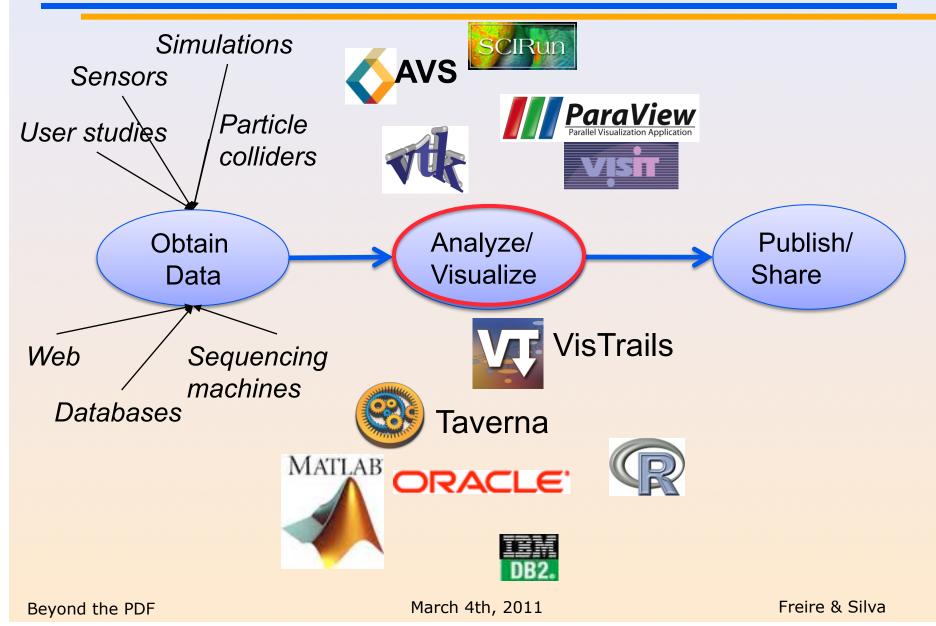
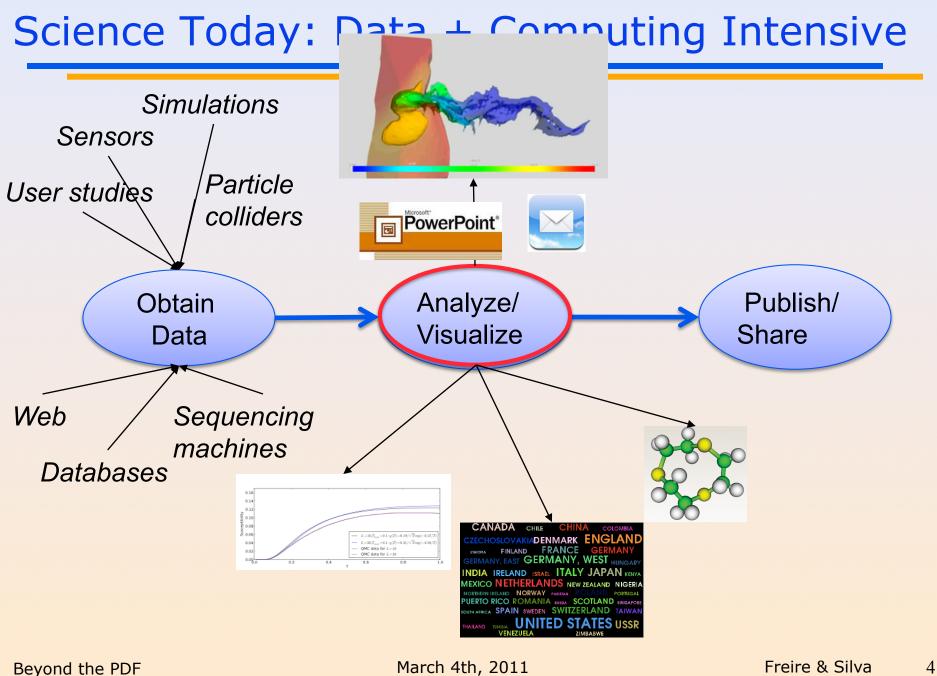
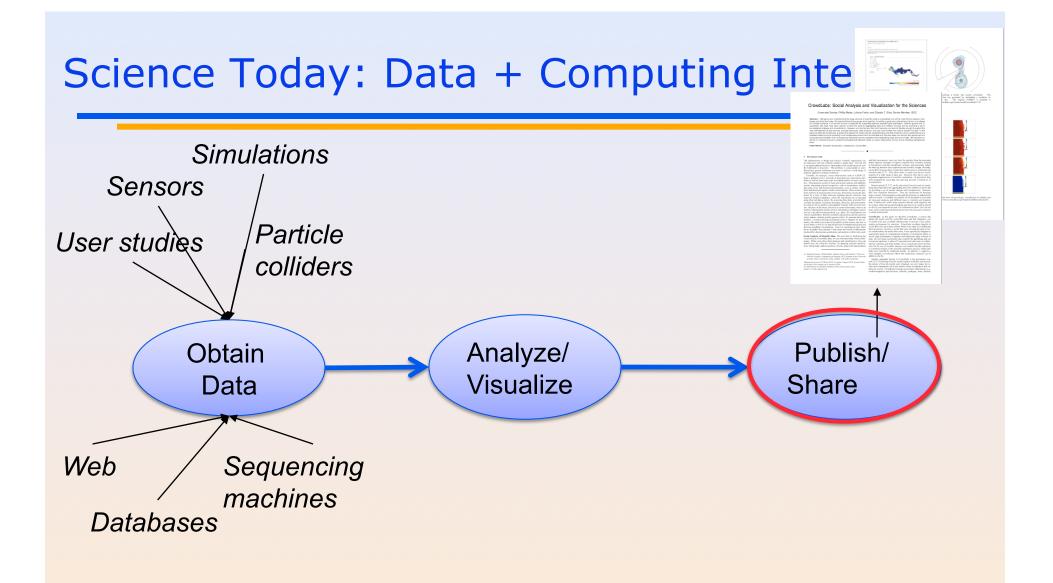
Publishing Reproducible Results with VisTrails


Juliana Freire and Claudio Silva VisTrails Group Scientific Computing and Imaging Institute School of Computing University of Utah

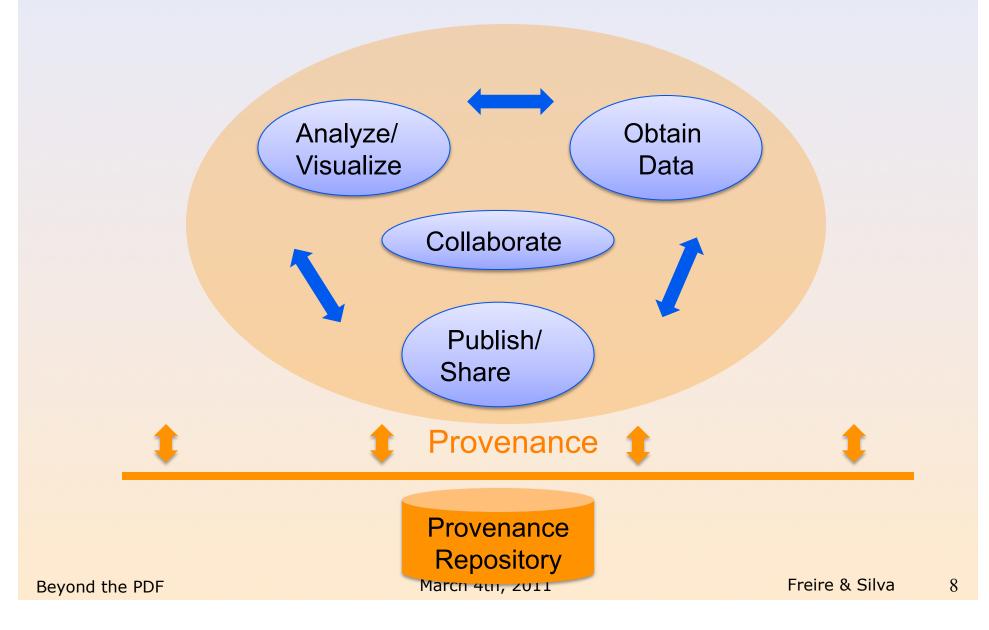





Science Today: Data Intensive

Science Today: Data + Computing Intensive

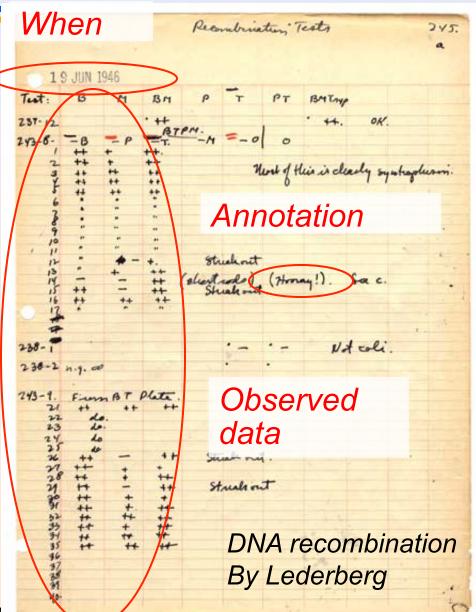
Science Today: Incomplete Publications


- Publications are just the tip of the iceberg
 - Scientific record is incomplete--to large to fit in a paper
 - Large volumes of data
 - Complex processes
- Can't (easily) reproduce results

Science Today: Incomplete Publications

 Publications are just the tip of the icet "It's impossible to verify most of the results that computational scientists present at conference and in papers." [Donoho et al., 2009] "Scientific and mathematical journals are filled with pretty pictures of computational experiments Car that the reader has no hope of repeating." [LeVeque, 2009] "Published documents are merely the advertisement of scholarship whereas the computer programs, input data, parameter values, etc. embody the scholarship itself." [Schwab et al., 2007]

Need Provenance-Rich Science


Provenance in Science

- Interpret and *reproduce* results
- Understand the experiment and chain of reasoning that was used in the production of a result
- Verify that an experiment was performed according to acceptable procedures
- Identify the inputs to an experiment were and where they came from
- Assess data quality
- Track who performed an experiment and who is responsible for its results

Provenance is as (or more!) important as the results

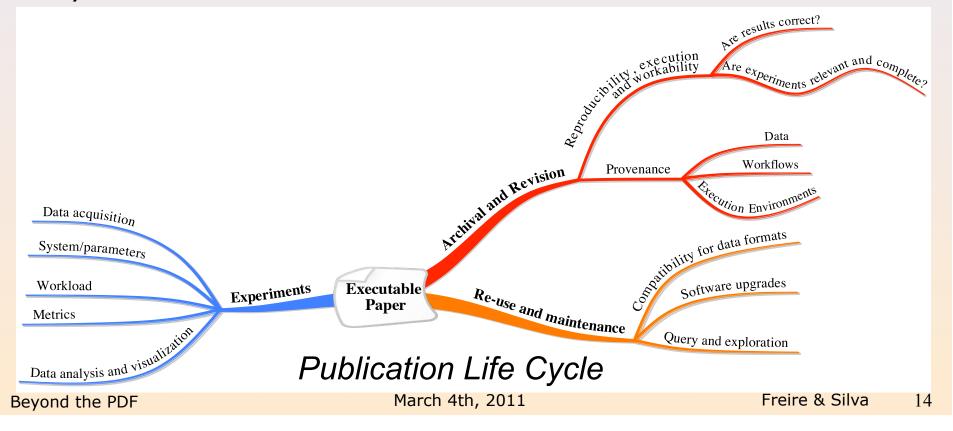
Provenance in Science

- Not a new issue! Lab notebooks have been used for a long time What is new? Large volumes of data - Complex analyses computational processes Writing notes is no longer an option Need infrastructure to
 - capture and manage provenance information

Provenance-Rich Publications

- Bridge the gap between the scientific process and publications
 - The scientific record needs to be *complete and trustworthy*
 - Papers with *deep* captions
- Show me the proof: results that can be reproduced and validated
 - Encouraged by ACM SIGMOD, a number of journals, funding agencies, academic institutions (e.g., http:// www.vpf.ethz.ch/services/researchethics/Broschure)

Provenance-Rich Publications: Benefits


- Produce more knowledge---not just text
- Allow scientists to stand on the shoulders of giants (and their own...)
 - Science can move faster!
- Higher-quality publications
 - Authors will be more careful
 - Many eyes to check results
- Describe more of the discovery process: people only describe successes, can we learn from mistakes?
- Expose users to different techniques and tools: expedite their training; and potentially reduce their time to insight

Provenance-Rich Publications: Challenges

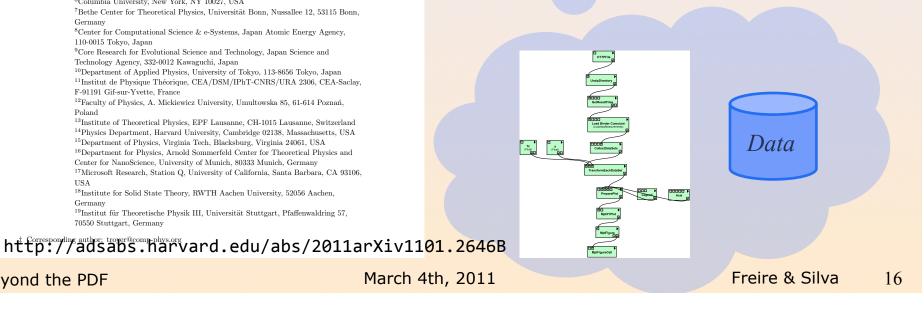
- It is too hard, time-consuming for authors to prepare compendia of reproducible results
 - Data, computations, parameter settings, etc.
- It is too hard for reviewers (and readers) to install, compile, and reproduce experiments
 - Different OSes, library versions, hardware, large data, incompatible data formats...
- Our goal: simplify the process of sharing, reviewing and re-using scientific experiments and results

Our Approach

- Focus on computational experiments: Reproduce, validate and re-use
- Integrate data acquisition, derivation, analysis, visualization, and their provenance with the publication life cycle

Our Approach: An Infrastructure to Support Provenance-Rich Papers

- Tools for *authors* to create *workflows* that encode the computational processes, package the results, and link from publications
 - Support different approaches to packaging workflows/data/ environment for publication
- Tools for testers to repeat and validate results
 - How to generate experiments that are most informative given a time/resource limit?
- Interfaces for searching, comparing and analyzing experiments and results
 - Can we discover better approaches to a given problem?
 - Or discover relationships among workflows and the problems?


An *Provenance-Rich* Paper: ALPS2.0

The ALPS project release 2.0: Open source software for strongly correlated systems

B. Bauer¹ L. D. Carr² A. Feiguin³ J. Freire⁴ S. Fuchs⁵ L. Gamper¹ J. Gukelberger¹ E. Gull⁶ S. Guertler⁷ A. Hehn¹ R. Igarashi^{8,9} S.V. Isakov¹ D. Koop⁴ P.N. Ma¹ P. Mates^{1,4} H. Matsuo¹⁰ O. Parcollet¹¹ G. Pawłowski¹² J.D. Picon¹³ L. Pollet^{1,14} E. Santos⁴ V.W. Scarola¹⁵ U. Schollwöck¹⁶ C. Silva⁴ B. Surer¹ S. Todo^{9,10} S. Trebst¹⁷ M. Troyer¹[‡] M.L. Wall² P. Werner¹ S. Wessel^{18,19} ¹Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland ²Department of Physics, Colorado School of Mines, Golden, CO 80401, USA ³Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071. USA ⁴Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA ⁵Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen, Germany ⁶Columbia University, New York, NY 10027, USA ⁷Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn, Germany ⁸Center for Computational Science & e-Systems, Japan Atomic Energy Agency, 110-0015 Tokyo, Japan ⁹Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 332-0012 Kawaguchi, Japan ¹⁰Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan ¹¹Institut de Physique Théorique, CEA/DSM/IPhT-CNRS/URA 2306, CEA-Saclay, F-91191 Gif-sur-Yvette, France ¹²Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań. Poland ¹³Institute of Theoretical Physics, EPF Lausanne, CH-1015 Lausanne, Switzerland ¹⁴Physics Department, Harvard University, Cambridge 02138, Massachusetts, USA ¹⁵Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA ¹⁶Department for Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, 80333 Munich, Germany ¹⁷Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106. USA ¹⁸Institute for Solid State Theory, RWTH Aachen University, 52056 Aachen, Germany ¹⁹Institut f
ür Theoretische Physik III, Universit
ät Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

adder chain lattice 0.20 0.15 eptibility χJ 0.10 Susc 0.05 0.00 0.8 1.4 0.6 1.0 1.2 Temperature T/J

Figure 1. A figure produced by an ALPS VisTrails workflow: the uniform susceptibility of the Heisenberg chain and ladder. Clicking the figure retrieves the workflow used to create it. Opening that workflow on a machine with VisTrails and ALPS installed lets the reader execute the full calculation.

Beyond the PDF

An *Executable* Paper: ALPS2.0

The ALPS project release 2.0: Open source software for strongly correlated systems

B. Bauer¹ L. D. Carr² A. Feiguin³ J. Freire⁴ S. Fuchs⁵ L. Gamper¹ J. Gukelberger¹ E. Gull⁶ S. Guertler⁷ A. Hehn¹ R. Igarashi^{8,9} S.V. Isakov¹ D. Koop⁴ P.N. Ma¹ P. Mates^{1,4} H. Matsuo¹⁰ O. Parcollet¹¹ G. Pawłowski¹² J.D. Picon¹³ L. Pollet^{1,14} E. Santos⁴ V.W. Scarola¹⁵ U. Schollwöck¹⁶ C. Silva⁴ B. Surer¹ S. Todo^{9,10} S. Trebst¹⁷ M. Troyer¹[‡] M.L. Wall² P. Werner¹ S. Wessel^{18,19} ¹Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland ²Department of Physics, Colorado School of Mines, Golden, CO 80401, USA ³Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071. USA ⁴Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA ⁵Institut für Theoretische Physik, Georg-August-Universität Göttingen, Göttingen, Germany ⁶Columbia University, New York, NY 10027, USA ⁷Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn, Germany ⁸Center for Computational Science & e-Systems, Japan Atomic Energy Agency, 110-0015 Tokyo, Japan ⁹Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 332-0012 Kawaguchi, Japan ¹⁰Department of Applied Physics, University of Tokyo, 113-8656 Tokyo, Japan ¹¹Institut de Physique Théorique, CEA/DSM/IPhT-CNRS/URA 2306, CEA-Saclay, F-91191 Gif-sur-Yvette, France ¹²Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań. Poland ¹³Institute of Theoretical Physics, EPF Lausanne, CH-1015 Lausanne, Switzerland ¹⁴Physics Department, Harvard University, Cambridge 02138, Massachusetts, USA ¹⁵Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA ¹⁶Department for Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, 80333 Munich, Germany ¹⁷Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106. USA ¹⁸Institute for Solid State Theory, RWTH Aachen University, 52056 Aachen, Germany ¹⁹Institut f
ür Theoretische Physik III, Universit
ät Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

adder chain lattice 0.20 0.15 eptibility χJ 0.10 Susc 0.05 0.00 0.8 1.4 0.6 1.0 1.2 Temperature T/J

Figure 1. A figure produced by an ALPS VisTrails workflow: the uniform susceptibility of the Heisenberg chain and ladder. Clicking the figure retrieves the workflow used to create it. Opening that workflow on a machine with VisTrails and ALPS installed lets the reader execute the full calculation.

Beyond the PDF

Editing an executable paper written using LaTeX and VisTrails <u>http://www.vistrails.org/download/download.php?type=MEDIA&id=executable_paper_latex.mov</u>

Exploring a Web-hosted paper using server-based computation http://www.vistrails.org/download/download.php?type=MEDIA&id=executable_paper_server.mov

An interactive paper on a Wiki http://www.vistrails.org/index.php/User:Tohline/CPM/Levels2and3

An Infrastructure to Support Provenance-Rich Papers

Writing & Development

- Specifying computations
- Provenance of data and computations
- Execution infrastructure
- Review & Validation
 - Local, remote, and mixed execution
 - Interacting, testing and validating computations and their results
- Publishing, Maintenance, & Re-Use
 - Maintenance and longevity
 - Querying and re-using published results.

Writing & Development

An author benefits from working in an environment that simplifies the writing of an executable paper

Leverage VisTrails' infrastructure

The VisTrails System

- Workflow-based system for data analysis and visualization
- Comprehensive provenance infrastructure
- Transparently tracks provenance of the discovery process---from data acquisition to visualization
 - The *trail* followed as users generate and test hypotheses
- Leverage provenance to streamline exploration
 - Support for reflective reasoning and collaboration

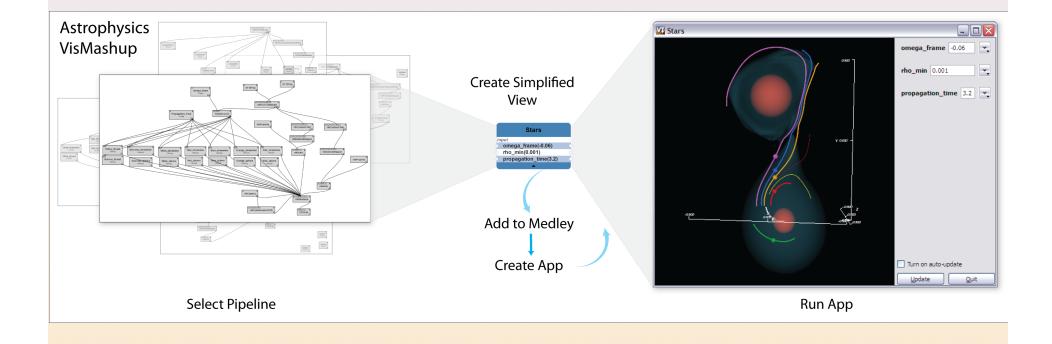
 Ouery and mine proven Visualizing environmental simulations (CMOP S Simulation for solid, fluid and structural mechanic (Galileo Network, UFRJ Brazil) Quantum physics simulations (ALPS, ETH Switz Climate analysis (CDAT) Habitat modeling (USGS) Open Wildland Fire Modeling (U. Colorado, NCA High-energy physics (LEPP, Cornell) Cosmology simulations (LANL) 	 Study on the use of tms for (Pyschiatry, U. Utah) eBird (Cornell, NSF Data Astrophysical Systems (T NIH NBCR (UCSD) Pervasive Technology La University) 	ONE) Tohline, LSU) bs (Heiland, Indiana eden)
Beyond the PDF Ma	arch 4th, 2011	Freire & Silva

21

Writing & Development

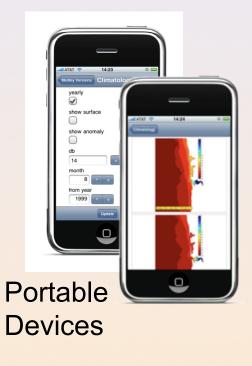
An author benefits from working in an environment that simplifies the writing of an executable paper

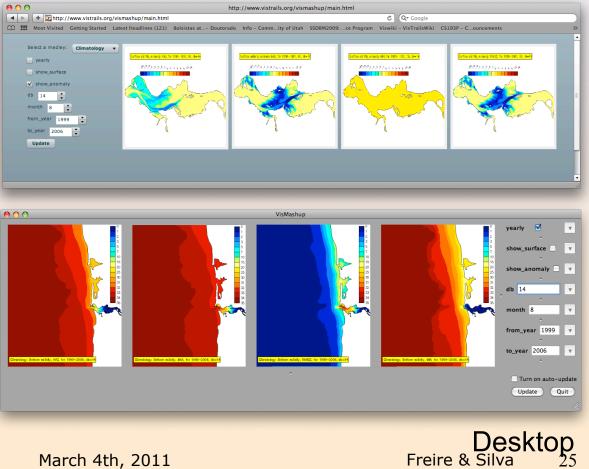
- Leverage VisTrails' infrastructure
- Computations specified as workflows
 - Ability to combine tools
 - Support for different levels of granularity can facilitate the understanding of the computations and results
- Provenance of data and computations
 - Parameters, input data, computational environment (OS, library versions, etc)
 - Strong links between data and their provenance [Koop@SSDBM2010]
- Connecting results to their provenance
 - LateX, Word, Powerpoint, HTML, wikis


Review & Validation

Improve the quality of reviews: reviewers have the ability to explore and validate conclusions

- Execution environment
 - Software dependencies; proprietary code and data; special hardware
 - Virtual machines, CDEpack
 - Local, remote, and mixed execution
- Testing and validating computations and their results
 - Reproduce
 - Workability: explore parameters and configurations the authors might not have described in the paper
 - Obtain insights
 - Data exploration infrastructure


Publishing, Maintenance, & Re-Use


Simplify interaction: the VisMashup system [Santos@TVCG2009]

Publishing, Maintenance, & Re-Use

 Simplify interaction: the VisMashup system Publish using different media

Web

March 4th, 2011

Publishing, Maintenance, & Re-Use

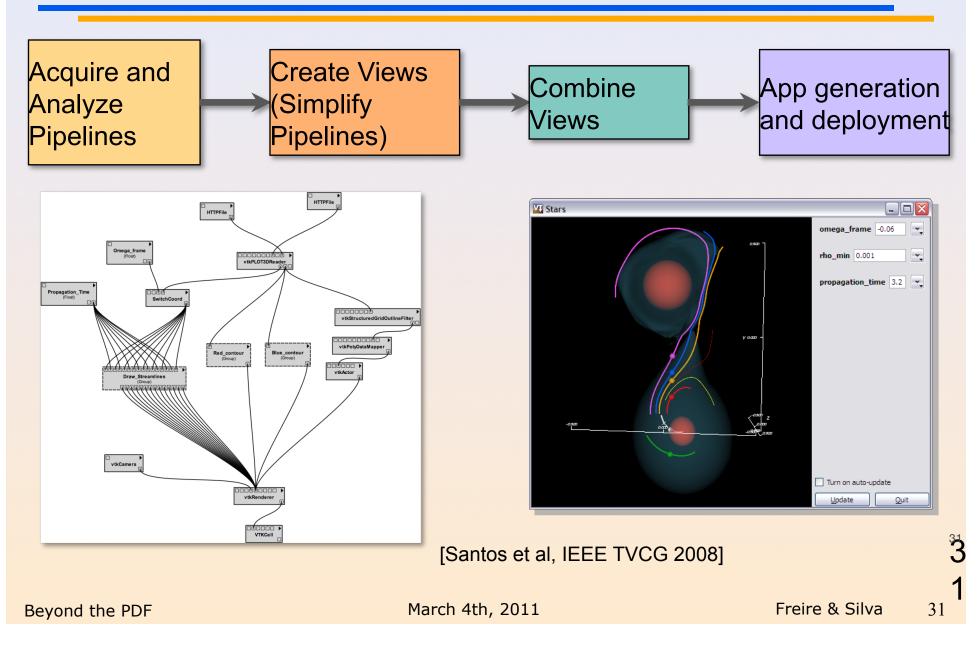
- Simplify interaction: the VisMashup system
- Publish using different media
- Maintenance and longevity:
 - Software evolves, try new algorithms: need upgrades [Koop@IPAW2010]
- Querying and re-using published results
 - Opportunities for knowledge discovery and re-use
 - A search/query engine for experiments: text + structure [Scheidegger@TVCG2007]: Can we discover better approaches to a given problem? Or discover relationships among workflows and problems?
 - Combine multiple results through VisMashups

Current Uses

- ALPS community
- Simulations of computational fluid dynamics
- Databases:
 - experiments using distributed database systems, querying Wikipedia
 - http://www.vistrails.org/index.php/RepeatabilityCentral
- ACM SIGMOD repeatability effort
 - Since 2008 verifies the experiments published in accepted papers
 - In 2010, 20% of the papers got the reproducibility stamp!
 - In 2011, use VisTrails and lay out a set of guidelines to simplify and expedite the reviewing process
 - <u>http://www.sigmod2011.org/calls_papers_sigmod_</u> research_repeatability.shtml

Conclusions and Future Work

- Provenance is crucial for science and an enabler for executable papers
- Built an end-to-end solution based on VisTrails
 - This is a starting point--many different requirements: need to mix and match different components
 - E.g., it is possible to support for provenance from other tools
- Sharing provenance-rich papers creates new opportunities
 - Expose users to different techniques and tools
 - Users can learn by example; expedite their training; and potentially reduce their time to insight
 - Better science! (remember Tim's Alzheimer's example?)
- Many challenges and several open computer science questions


Acknowledgments

- Thanks to: Philippe Bonnet, Philip Mates, Matthias Troyer, Dennis Shasha, Emanuele Santos, Claudio Silva, Joel Tohline, Huy T. Vo, and the VisTrails team
- This work is partially supported by the National Science Foundation, the Department of Energy, and IBM Faculty Awards.

Thank you

VisMashup: Creating Mashups from Workflows

